Mirrors for the Einstein Telescope coating requirements for gravitational-wave detection

Jessica Steinlechner Precision Fair 15.11.2023

Gravitational Waves

- Predicted by Einstein
- Generated by massive, accelerated objects: colliding neutron stars, supernovae, black hole mergers, ...
- Travel with the speed of light
- Not disturbed by matter
- Can make 'dark' and hidden objects visible
- Provide more information about the world we live in

Gravitational Waves

Cause tiny length changes

"Change the distance between Earth and Sun by less than the diameter of an atom"

 Took almost 60 years from starting to construct the first detector to measuring the first gravitational wave in 2015

Gravitational Wave Detectors

- Michelson interferometer using many 'tricks' to increase the sensitivity
 - Several kilometer long arms
 - Suspended mirrors
 - High laser power
 - Squeezed light
 - Arm cavities formed by input test masses (ITMs) and end test masses (ETMs)
 - o ...
- Currently: 5 active detectors:
 - LIGO in Livingston and Hanford, US
 - Virgo in Cascina (near Pisa), Italy
 - GEO600 in Ruthe (near Hannover), Germany
 - KAGRA in Kamioka mine, Japan

Gravitational Wave Detectors

Limitations of Current Gravitational Wave Detectors

≻ < 50Hz

- Seismic / environmental noise, coupling either directly or via gravity gradient forces
- Radiation pressure noise, photons pushing on suspended mirrors
- ➤ around 100Hz
 - Coating thermal noise, Brownian motion of mirror surface
- >> 1 kHz
 - Shot noise, counting statistics of photons

Advanced LIGO design sensitivity

Plans and Challenges of Future Detectors

Aim for *a factor 10 improvement* at mid and high frequencies

"within reach of continuous improvements"

Low frequencies: improvement more *a factor of* 100 to 1000

 \rightarrow only possible with new approaches "disruptive technologies" (e.g. cryogenics)

- > Plan for the Einstein Telescope: Split detector into
 - Room temperature and high laser power at high frequencies
 - Low temperature (see next slide) and low laser power at low frequencies

Coating Thermal Noise (simplified model)

Coating thermal noise (CTN)

- Lower for larger beams
- Determined by material properties of coating and substrate
- Frequency dependent: more prominent at low frequencies
- ➤ Temperature dependent
 → motivation for cryogenic mirrors (at low frequencies)
- > Thin coating

 \rightarrow materials with low mechanical loss needed

Coating Thermal Noise (simplified model)

Coating thermal noise (CTN)

- Lower for larger beams
- Determined by material properties of coating and substrate
- Frequency dependent: more prominent at low frequencies
- ➤ Temperature dependent
 → motivation for cryogenic mirrors (at low frequencies)
- > Thin coating

 \rightarrow materials with low mechanical

mirror temper

CTN =

beam radius (on

The Coating Requirements

Absorption and Uniformity of Current Coatings

- Made of Ta_2O_5 doped with TiO₂ (high refractive index; n=2.09 @1064nm) and SiO₂ (low refractive index; n=1.45 @1064nm): TiO₂ :Ta₂O₅ dominates coating thermal noise
- > Deposited by Laboratoire des Matériaux Avancés (LMA) via ion beam sputtering (currently GW standard)
- ▷ Low optical absorption (ITMs: 0.22ppm; ETMs: 0.27ppm) and low scattering
- ➢ Diameter:34cm

J. Steinlechner

Mechanical Loss

- > Left: Mechanical loss of current materials measured at room temperature
- \succ Right: Mechanical loss of Ta₂O₅ as a function of temperature, and at various heat treatment temperatures

Martin, Class. Quant. Grav. 27 225020, 2010

Mechanical Loss

- > Left: Mechanical loss of current materials measured at room temperature
- \succ Right: Mechanical loss of Ta₂O₅ as a function of temperature, and at various heat treatment temperatures

Martin, Class. Quant. Grav. 27 225020, 2010

Finding Materials...

12

6

Mechanical loss [x10 -4]

... is a mix of 'trial and error' and of understanding and modelling the structure

Example: Atomic structure characterization and modeling

- > Evidence: Correlation of structural properties to mechanical loss via two-level-systems (TLS)
- > X-ray, electron scattering used to probe local structure:

Materials with low ES and FS, and mostly CS structures should result in low RT loss, e.g. SiO₂, GeO₂

Prasai et al., Phys. Rev. Lett., 123:045501, 2019

Two Level System (TLS model)

Coating Development

Candidate materials for next upgrades of current LIGO/Virgo detectors:

- \succ Mixture of GeO₂ and TiO₂
 - Low mechanical loss
 - Theoretically estimated to have 2x reduced CTN compared to current coatings
- \succ Mixture of SiO₂ and TiO₂

J. Steinlechner

- Sightly higher mechanical loss than GeO₂ TiO₂ mix, but similar/lower CTN
- Working on reduction of cracks/bubbles after heat treatment

Coating Development

Candidate materials for next upgrades of current LIGO/Virgo detectors:

- Mixture of GeO, and TiO, >
 - Low mechanical loss 0
 - Theoretically estimated to have 2x reduced CTN compated to cur Ο
- \succ Mixture of SiO, and TiO,
 - Sightly higher mechanical loss than GeO₂ TiO₂ mix, but similar/lower CTN Ο
- Working on reduction of cracks/bubbles after heat treatment >

Coatings meeting meeting the requirements of LIGO/Virgo upgrades: Also suitable for ET-HF ('room temperature ET')

1000

measured CTN

800

600

Displacement $\left[m/\sqrt{Hz} \right]$

Cryogenics/other coating options

- Cryogenic detector operation, and the use of other detector wavelengths (e.g. 1550nm or 2um, instead of 1064nm) offers many other material options, e.g. a-Si, SiN, ...
- Singlecrystalline multilayers (<u>AIGaAs</u>, <u>GaP</u>, etc.) show very low mechanical loss and optical absorption
 - For use of room-temperature SiO₂ mirrors: substrate transfer + bonding needed
 - For use of low-temperature crystalline mirrors (silicon, sapphire, ...): can potentially be grown directly on the mirror substrate
- Multimaterial coatings: combining more than two materials
- 'Coating-free' mirrors: gratings
- Crystalline-amorphous hybrid coatings: crystalline toplayer
- > Implanttion of layers into the crystalline substrate via ion implantation

Schroeter, arXix:0709.4359, 2007

>

What we do

Measurements of:

- Optical absorption
 - usually on fused silca substrates, 1" in diameter
- Mechanical loss
 - Room temperature: usually on fused silica substrates,
 2 or 3" in diameter, 1mm thick
 - Cryogenics: silicon or sapphire samples,
 2" in diameter, between 1 and 5mm thick
- Spectrophotometry: refractive index and thickness needed to analyse mechanical loss and absorption
- Various cycles of heat treatments

 \rightarrow characterisation of samples can take weeks to months (depending on what we want to know/optimise)

What we need for development (...)

- Suggestions & capabilites for 'new/interesting' materials
- Small-scale samples for R&D: initially just single layers of order of 500nm
- Transparency and good knowledge of deposition procedure
- Quick turn-around (deposition, characterisation and optimisation)
- Capacity for optimisation
- > Reproducibility
- Transferable procedures
- \succ

What we do not need for making progress

- ➤ The 'final mirror'
 - capability to coat large/heavy mirrors
 - high thickness uniformity
 - high reflectivity
- Large numbers of samples

Summary

▶ For the Einstein Telescope, we need large-scale mirrors of ~0.5m diameter with

- High reflectivity
- \circ Low thermal noise (\rightarrow low mechanical loss)
- Low optical absorption
- High uniformity (of thickness, but also of all other properties)
- 0 ...
- Most likely different solutions are needed for
 - ET-HF (room temperature, 1064nm)
 - ET-LF (cryogenic temperatures, 1550nm or 2um)
- ➢ Currently: R&D phase
 - Looking for materials with suitable properties
 - Optimising & understanding materials
 - o ...

Coatings for GW detectors: World-wide effort > 40 institutions > 200 researchers

Thank you for your attention!

20