Overview DIFFER facilities

Hans van Eck Facilities & Instrumentation department

Science for Future Energy

Hans van Eck | Advanced Instrumentation 19 June 2024 200 employees 11 research groups Eindhoven, TU/e campus EUROfusion beneficiary 15 M€ annual turnover

DIFFER Fusion Energy research programme

Towards an integrated solution for heat exhaust from fusion reactors

Focus on three topics crucial to realization of fusion reactor

- Materials for wall and divertor targets
- Sensors for exhaust and performance control
- Edge-core integrated models for control and optimization

These topics are highly intertwined

Solar Fuels Renewable energy \rightarrow chemicals and fuels

Clean conversion: CO₂-neutral fuels and chemistry

- Seasonal and regional energy storage
- Energy dense fuels for long haul transport and mobility
- Sustainable feedstock for green industry

Technological challenge

Make renewable fuels and chemicals cheaper than the fossil equivalents

Section A Current (user) facilities

The power exhaust challenge for fusion energy

Understanding PSI is important:

- Lifetime: erosion + damage of PFC's
- Safety: tritium retention + dust formation

New challenges for future machines:

- Extended operational regimes (flux)
- Extended operational time (fluence)
- Presence of tritium as a fuel gas (retention)
- Neutron irradiation (material properties)

ITER divertor

The role of linear machines in fusion research

Current fusion devices:

- Do not cover expected operational conditions
- Cannot reach required high fluence
- No easy access and easy target exchange

+ Control of plasma parameters

+ Good diagnostic access

+ Easy target exchange

Magnum-PSI

- Unique high flux and high fluence linear plasma device
- Heat and particle fluxes comparable to ITER/DEMO divertor
- Transient plasma loading capabilities
- Extensive diagnostic suite (incl. in situ ion-beam analysis)

Hans van Eck | Advanced Instrumentation 19 June 2024

High fluence, high power regime accessible

Time needed for Magnum-PSI to reach the divertor fluence after 5000 discharges in four different fusion reactors at a heat load of 10 MW m⁻² (*T*_e=1.0 eV, *n*_e=10.6x10²⁰ m⁻³ and *I*=8.6x10²⁴ m⁻² s⁻¹). Tokamak data taken from [G. De Temmerman et al *Plasma Phys. Control. Fusion* **60** 044018 (2018)]

Upgraded Pilot-PSI (UPP)

- Ion beam measurements in combination with high-flux plasma
 - Retention dynamics
 - Dynamic outgassing measurements
 - Dynamics of preferential sputtering
- Operando/in situ ion beam (proton) damaging
 Simultaneous damage and fuel implantation
- Nano-structuring of materials (e.g. electrodes)

Materials for wall and divertor targets

- Characterize effect of high heat and particle loads (including transients) on materials (e.g., sputtering, retention, surface modification)
- Test ITER divertor: tungsten mono blocks
- Simultaneous "neutron" (protons from IBF) and plasma loading
- Develop liquid metal divertor solution

Ion Beam Facility (IBF)

- In situ ion beam analysis (IBA) at **Magnum-PSI**, coupling non-destructive depth profiling of elements with high flux/fluence plasma
- Unique operando IBA in **UPP**
- Ex situ IBA in **IBAS**
- Simultaneous irradiation and corrosion experiments in **DICE** (only one in Europe)
- On-going development of operando electrochemical IBA (e-IBA)

3.5 MV Singletron

Differ Irradiation-Corrosion Experiment (DICE)

Develop wall material technologies for a thorium (molten-salt) reactor

- Simultaneous salt-corrosion and 3 MeV pirradiation
- Dynamic salt
- Higher currents: 3-40 µA/cm² (~1 dpa/day)
- Operation time: up to 100 hours
- Temperatures: up to 1000°C
- Adaptable design (salt, water, liquid metal)

Combined user facilities

Facilities open for industry

Apply for access:

https://www.differ.nl/#front-facilities

Section B Future (user) facilities

Liquid metal divertors as an alternative strategy for fusion

Fusion rectors will produce more heat and neutrons and operate continuously

LiMeS-lab: an integrated laboratory for the development of Liquid Metal Shield technologies for fusion reactors

Use Selective Laser Melting to produce high quality 3D printed structures to contain liquid metal

- Priorities:
 - High density W
 - Small feature size (<100 um)
 - Good strength/toughness
- Upgrade foci:
 - Powder bed temperature
 - → reduce thermal gradients
 - Oxygen content
 - \rightarrow reduce porosity
 - Laser power density/spot size
 → reduce feature size

Pulsed Laser Deposition Lab for Energy Research (PLD4Energy)

- Ample in situ characterization
- Well-controlled deposition of transition metal oxides up to 10 cm in diameter

Photovoltaics

https://news.mit.edu

Electro engine

Fuel Cells

www.imageproduction.nl

Electrolysers

www.wikipedia.com

Batteries

Argonne National Laboratory

PLD cluster line

Electrochromic windows

www.greengeek.ca

Pulsed Laser Deposition Lab for Energy Research (PLD4Energy)

Small area

Self-driving lab

Section C Additional slides

Sensors for exhaust and performance control

- Detachment physics and model validation
- Diagnostic of plasma neutral interaction in the divertor
- Modelling and validation of atomic/molecular plasma interactions
- Coming soon: active spectroscopy for atomic and vibrationally resolved molecular Hydrogen

Sensors for exhaust and performance control

- Diagnostic of plasma neutral interaction in the divertor
- Multi-Spectral Imaging diagnostics (MANTIS): TCV, MAST-U
- Detachment physics

Exhaust and performance control

- System Identification and control of divertor dynamics
- Development and validation of reduced models of divertor dynamics

x-point radiator control on ASDEX-U with DIFFER controller

Systems Engineering example: ITER VRVS diagnostic

Applied to ITER diagnostics

- VSRS diagnostic as case study
- DSM shows dependency patterns in complex system architecture
- ➔ Tool to manage and organize complex systems

Electrochemical membrane reactors for energy storage

- Chemical lab for material development
 - (Nanostructured) electrode, (thin) electrolytes and membrane electrode assemblies
- Electrochemical systems
 - <u>Conventional:</u> Anion Exchange Membrane (AEM) electrolysers; Proton Exchange Membrane (PEM) electrolysers; Solid Oxide Electrolyte Cells (SOEC)
 - <u>Novel/Hybrid:</u> light driven; plasma enabled

Electrochemical membrane reactors for energy storage

Multiple testing facilities

- Photoelectrochemical setups (x3)
 - Lab scale cells: 1-5 cm² active area
 - Prototype: 100 cm² active area
- AEM/PEM setups (x4)
 - Lab scale single cells: 1-10 cm² active area
 - Short stack: 250 cm² active area
 - Operating T: 20-80°C
- SOE setups (x3)
 - $\circ~$ Lab scale single cells; Active area: 1-10 cm^2
 - Short stack: 500 cm²
 - Operating T: 400-900°C

Plasma facilities for molecular conversion

CO₂ plasmolysis: studying the high-rate decomposition of CO₂ into CO and O₂

INIT-SF 1.5 kW/2.45 GHz, 30 slm, 50 - 1000 mbar **PROTO-SF** 6 kW/913 MHz, 120 slm, 50 - 1000 mbar KEROGREEN 6 kW/913 MHz, 120 slm, 100 - 200 mbar

Fully integrated concept reactor for production of kerosene from ^{30/23} CO₂, H₂O & renewable electricity

Plasma facilities for molecular conversion

- Laser spectroscopic methods (Thomson, rotational and vibrational Raman) for operando plasma and molecular characterization
- Output gas analysis: Fourier-transform infrared spectroscopy (FTIR)

Materials Characterization Lab

Cluster the general-purpose materials characterization tools in one location

- Atomic force microscope (AFM)
- Fourier transform infrared spectroscopy (FTIR)
- Scanning electron microscopy (SEM) with energy dispersive x-ray analysis (EDX)
- Sputter coater for SEM
- Spectroscopic ellipsometry
- Ultraviolet-visible spectroscopy (UV-VIS)
- X-ray diffractometer (XRD)
- Dielectric measurement setup
- Transmission electron microscopy (TEM) (other location)

SEM/EDX and XRD

Our facilities are open to external researchers and industry

Hans van Eck

