

Kees Buijsrogge Director TNO Space & Scientific Instrumentation

We are TNO

TNO connects

people and knowledge

to create innovations that

1/ boost companies' competitiveness and

2/ sustainably increase well-being across society.

90 years of innovation

TNO Unit High Tech Industry

- TNO's unit High Tech Industry realizes groundbreaking technological and systemic innovations in hightech industrial value chains in order to safeguard and improve societal well-being and strengthen our national earning capacity.
- We believe the Dutch high-tech industry holds and will continue to hold a leading position in both new and existing markets, powered by TNO technologies.
- 4 innovative roadmaps combining market demands and technology based solutions:

Why TNO Space & Scientific Instrumentation?

Economic growth in the Netherlands and Europe

Why TNO Space & Scientific instrumentation?

Economic growth in the Netherlands and Europe

LISA

- Detection of Gravitational Waves
- TNO is working on Pointing Mechanisms Focus on Point Ahead Angle Mechanism
- Measure distance changes with picometer accuracy over 2.5 million km
- Measurement band: 30 micro Hz to 1 Hz

Ground-based astronomy at TNO

Answering the Big Questions:

Understanding the universe and our place in it, the hunt for exoplanets, international collaboration and the advancement of human knowledge

Industry goal

Potential for series production allows to involve industry, boosting their expertise, international visibility and business. Spin-off to aerospace, medical and ICT.

The Netherlands

The Netherlands has a strong and long standing position in astronomy

TNO has a 100% success rate of delivering complex instruments for space and science, and a world class knowledge position: optics, optomechanics, (space) systems engineering

GROUND BASED ASTRONOMY - HERITAGE

Laser Launch Telescopes for 4LGS Facility

VLTi Delay Lines

Ground-based astronomy

Targeting large adaptive optics systems with potential for series production for Dutch industry

ELT M1 support structure

- ESO's Extremely Large Telescope has a 39m diameter primary mirror, consisting of 798 hexagonal 1.4m segments
- The M1 support structure keeps each segment of each shape within 22nm surface form error, regardless of segment shape and gravity vector
- TNO together with VDL developed 6 prototypes meeting all specs
- Goal of prototype phase: qualify NL for > 30MEUR volume manufacturing contract from ESO for VDL

VDL ETG wins ESO M1 project

VLT laser launch telescope

- Laser launch telescopes project an artificial 'star' by exciting sodium atoms on the upper atmosphere.
- Observation of this star allows for the characterization of atmospheric turbulence, which can then be compensated for using an adaptive deformable mirror.
- This allows ground-based telescopes to have the clear vision of space telescopes like Hubble
- TNO delivered the laser launch telescopes for ESO's VLT observatory

VLT laser launch telescopes

TNO delivered 4 Laser Launch Telescopes for ESO's 4LGSF in 2012

- Large, highly aspheric optics with 17nm transmitted wavefront error
- Fully a-thermal for temperatures (0-150C) & all gradients (0.70C/hr) with <0.2 waves defocus
- Custom in-field pointing with Field Selector Mechanism: 4.8' radius with <0.1" accuracy (3σ)
- In-house (with TU Eindhoven & VSL) developed freeform optics metrology system is now a commercial product (DUI, Dutch sme)

Demcon & TNO win ELT laser guide star project

Laser projection system – 9 units for ELT and VLT Gravity+

- Laser Launch Telescope is passive a-thermal across operational temperature range including gradients
- Variable beam expander controls focus and corrects nonthermal error sources
- Building 9 Laser Projection Subunits (include 3 for VLT upgrade)
- With Dutch company Demcon took over new BCDS from ESO
- Spare parts, documentation & models
- Future training for observatory personnel

ELT laser projection systemcurrent status

- The first of 9 systems is fully integrated at Demcon HQ.
 - After Test Readiness Review on January 11, the system will be shipped to ESO HQ where TNO will perform verification testing.
- Formal delivery to ESO is scheduled for June 2024.
 - The first 3 units will go to the VLT Gravity+ instrument, the next 6 are for ELT itself.

Above right: ELT OTA1 subsystem integration ready at TNO Below right: The complete first LPS – prior to EMC testing at Demcon

Adaptive M2 for University of Hawai 'i 88-inch Telescope

- TNO concept offers far higher reliability at lower cost to user
- Funding: 1,5MEUR including partner investments
- Status: finalizing, on-sky demonstration by 2024

Consortium partners

- · University of Hawaii (US): advisor and launching customer
- University of California (US): test and research partner
- TNO (NL): development and performance testing
- VDL (NL): actuators & support structure manufacturing
- AAC Clyde Space (NL): electronics development
- Fraunhofer (DE): facesheet pre-forming
- NOVA (NL): facesheet finishing

OVERVIEW OF FUSION ACTIVITIES

Key Product Market Combinations (PMCs)

- Diagnostic System Design and Engineering
- > Plasma Cleaning Systems

Co-operations

- > ITER-IO, ITER-NL, ITER-Japan
- > DIFFER, AST-NL, ChromoDynamics
- General Atomics, Princeton Plasma Physics Law
- > IDOM

