Silicon Pore Optics for the Athena X-ray observatory

Marco Beijersbergen, cosine

Big Science Industriedag

remote sensing

space | HAPS | UAV | aircraft

inspection systems

energy | agrifood | health | semicon | environment

high energy optics

astronomy | material analysis | health

HEALTH

Bringing the measurement system to the sample

small instruments for operational use

© cosine

sats | smallsats | aircraft | uav | drones | field | towers | vehicles

HyperScout

NightPod

Credits: ESA

Hayabusa 2 - MASCOT

The Athena X-ray observatory

The Hot and Energetic Universe

- selected by ESA in its Cosmic Vision program
- Second L-class mission
- Launch 2031

Key scientific objectives

- Determine how and when large-scale **hot gas structures** formed in the Universe and track their evolution from the formation epoch to the present day.
- Perform a complete census of black hole growth in the Universe, determine the physical processes
 responsible for that growth and its influence on larger scales, and trace these and other energetic and
 transient phenomena to the earliest cosmic epochs.
- Provide a unique contribution to astrophysics in the 2030s by exploring high energy phenomena in all astrophysical contexts, including those yet to be discovered.

Revolutionary mission

Community and ESA working together to create new technologies, enabling Athena

Optics development is a joint effort by institutions and industry, led by ESA

Credits: ESA

Silicon Pore Optics development team

SPO invented to realise largest x-ray telescope to date

Stacks with different shapes, open area, coating ...

Radii spanning Athena's optic (1500, 737, 240 mm)

Increased open area (wider rib spacing)

Coated (iridium) to increase reflectivity; roughened to decrease stray light

production movie available on request

Fully automatic production process

- State of the art subsystems
 - FRT
 - Hexapod
 - Robotic arm
 - Metrology
 - Camera systems
- 4 robots in place
- used for ESA, MPE and SRON developments

SPO facilities for ATHENA

Synchrotron beam lines

- 12 m beamline operational at Bessy-II/PTB
- Back-up beamline to be implemented at ALBA

Coating facility

© cosine/ESA

© cosine/ESA

Shock testing

Туре	HPO number	Required level *	Passed level
Inner radius R = 277 mm	HPO-1218	150 g	971 g
	HPO-1234		896 g
Middle radius R = 737 mm	HPO-1198	200 g	893 g
	HPO-1207		929 g
	HPO-1210		977 g
	HPO-1215		946 g
Outer radius R = 1500 mm	HPO-1117	250 g	827 g
	HPO-1082		926 g
	HPO-1272		833 g
	HPO-1279		848 g

* Requirement for mirror module

Further developing SPO for other applications

SPIE 2019 papers on ATHENA Optics

- Development and manufacturing of SPO x-ray mirrors, [11119-13]
- Installation and commissioning of the silicon pore optics coatings facility for the Athena mission, [11119-14]
- Performance and stability of Ir/SiC x-ray mirror coatings for ATHENA, [11119-15]
- Stacking of mirrors for silicon pore optics, [11119-16]
- X-ray testing of silicon pore optics, [11119-17]
- Assembly of confocal silicon pore optic mirror modules, [11119-18]
- Environmental testing of silicon pore optics for Athena, [11119-19]
- Status of the silicon pore optics technology, [11119-20]
- Integration facility for the ATHENA X-Ray Telescope, [11119-21]
- BEaTriX--the Beam Expander Testing X-Ray facility for testing ATHENA's SPO modules: progress in the realization, [11119-22]
- VERT-X: a VERTical X-ray rasterscan facility for calibrations, [11119-23]
- PANTER activities toward testing and calibrating ATHENA optics, [11119-24]
- ATHENA: phase A study status and optics/instrument accommodation, [11119-27]
- A low-energy x-ray reflectometer for characterization of ATHENA mirror coatings [11119-25]
- Thermal simulations for characterization of ATHENA mirror modules with a radiating box in the BEaTriX facility [11119-53]
- BEaTriX--the Beam Expander Testing X-ray facility for testing ATHENA's SPO modules: the collimating mirror [11119-54]

