

JPE PRESENTATION

Active vibration isolation for Cold Finger Einstein Telescope

Huub Janssen 20-04-2023

JPE

High Tech Engineering 💙

Precision Point Cryo & Nano Products

About Us 👻 Contact

30 years of innovation

WE ARE DRIVEN BY INNOVATION

Expert in the development and realization of custom high-tech systems and scientific instruments for applications where accurate positioning is involved. In ambient, vacuum and cryogenic environments.

HIGH TECH ENGINEERING

Project based engineering: custom mechatronic solutions

WHAT CAN WE DO FOR YOU?

PRECISION POINT

Free engineering knowledge database: to the point and practical

CRYO & NANO PRODUCTS

Positioning products: for cryogenic and vacuum environments

Einstein Telescope

- Einstein Telescope ET Pathfinder
- How is JPE involved?
- Design of cryogenic vibration isolator.
- Test evaluation.

Einstein Telescope

ET Pathfinder Universiteit Maastricht

JPE

Mirror suspension

Cold finger

Cold Finger

How is JPE involved?

- Proven track record on accurate positioning in vacuum and cryogenic environment.
- In house development of cryogenic positioners with nanometric resolution.
- Vibration challenges from customers in scientific research.

Design of cryogenic vibration isolator

- XYZ isolation of Cold Finger
- Compact volume (250 mm diameter and 200 in height)
- Low payload mass
- Resonance frequency about 1 Hz (low pass filter)

IPF

Mechatronic concept

The mechanical design is based on the following key items:

- Completely frictionless guides of payload mass and sensor mass by introduction of flexure elements.
- Magnetic gravity compensation of sensor mass.
- Force actuation by means of cryogenic compatible voice coil actuator.
- Displacement measurement by means of optical interferometer.
- Gravity compensation of payload mass by mechanical spring.

Mechanical layout

Mechanical layout

Test evaluation

- Transmissibility = xp/xf [-] (goal: << 1)</p>
- Compliance = xp/Fd [m/N] (goal: << 1); Fd=xd * Cbraid [N]</p>

Theoretical expectations

Transmissibility and Compliance

Active isolation starts at 0.33 Hz while passive isolation starts at 10 Hz Active compliance starts at 0.33 Hz while passive compliance starts at 10 Hz

Measured results

Transmissibility

In passive mode: resonances of both the suspended inertial- and payload mass are present at 4 Hz and 8 Hz respectively.

www.JPE.nl

Vibration rejection ratio – active isolation

Inverse of transmission ratio

Measured results

Compliance. (predicted)

Conclusions

- Realized a cryogenic compatible compact active isolator with a relatively small mass that is able to significantly <u>attenuate floor vibrations</u> and <u>reduce disturbance forces on the payload</u> above 0.3
 [Hz]
- Great improvement found of the passive to active isolation frequency:
 - Passive resonance frequencies are 4 and 8 Hz with very little amount of damping
 - Active effective resonance frequency around 0.3 Hz with a large amount of damping.

Next steps

Realization of XYZ vibration isolator

Driven by innovation

Since 1991