Superconducting On-chip Instruments for Mapping the Submillimeter-wave Universe in 3D

Akira Endo 2023-04-20 Cryo Workshop, SRON Leiden

TIEMAN & DESHIMA

DESHIMA and TIFUUN

- Instruments for the ASTE telescope in Chile
- Observing λ $^{\sim}$ 0.8-3 mm
- Unique Strength: Ultra-wideband spectroscopy using on-chip filterbank spectrometers

- Development since 2010
- First of its kind

DESHIMA

 Tested once on the ASTE telescope Science observation from <u>2023</u>

New project since 2022

 Performance of ~100 DESHIMA's !

Timeline

DESHIMA 1.0

DESHIMA DESHIMA gets first funding

	~ ~ · · ·	~ ~ ~ ~	~ ~ / ~			
2010	2011	2012	2013	2014	2015	201

Kick-Off Symposium (TU Delft, 3 weeks ago)

Content of the State of the

Cosmic 3D Maps @ THz

Cosmology with Nanotechnology

3D

Cosmic 3D Maps @ THz

Interferometers: Only Minute Volume

Dichotomy of THz Technology

Cameras: Only 2D image

Cosmic 3D Maps @ THz

VOLUMIC

Astronomy across the **COSMIC WEB**

- Star-Forming Galaxies
- **Diffuse Matter**
- Galaxy Clusters

TIFUUN IFU Concept: Imaging Spectrometer on a Wafer

Ultra-wideband Lens-antennas (max 217)

DESHIMA 1-spaxel on-chip spectrometer

TIFUUN >100-spaxel imaging spectrometer

DESHIMA 1-spaxel on-chip spectrometer

TIFUUN >100-spaxel imaging spectrometer

Unit spaxel of an IFU = On-chip filterbank spectrometer (DESHIMA)

DESHIMA Concept

On-chip Filterbank Spectrometer

Requirements of the DESHIMA cryostat

DESHIMA Cryostat:

"DESHIMA 1.0" - Concept Demonstrator

"DESHIMA 1.0"

Minimal chip specs

332-377 GHz (45 GHz BW / 49 voxels)

Sufficient sensitivity for system test

End-to-end system check

- ✓ MKIDs operation on ASTE
 - (Photon-noise limited sensitivity)
- Readout system
- Cryostat system
- Remote control
- ✓ Installation procedure
- Contraction Logistics

Astronomical + atmospheric data

Software & calibration development

From DESHIMA 1.0 to DESHIMA

Better Spectrometer Fisching Chip

DESHIMA 2023-2024 Commissioning and Science Verification

DESHIMA

TIFUUN >100-spaxel imaging spectrometer

TIFUUN Concept

TIFUUN Astronomy: Volumic 3D Surveys with Plug-and-Play IFUs

[CII] Large **Scale Structure**

O Cosmic web of warm gas and star-formation

(Line Intensity Mapping)

SZ-Clusters

Galaxy Clusters in assembly

Tomography of THz line-emitting galaxies (TLEGs)

New population of star-forming galaxies hidden by dust

"KATANA" IFU & Survey Concept

Kohno et al., SPIE 2020, <u>https://arxiv.org/abs/2102.08280</u>

"Plug-and-Play" IFU System

Integral Field Units

Optics and Cryogenics

CONCERTO Dilution Cryostat (Monfardini et al.) + New optics for TIFUUN/ASTE

https://neel.cnrs.fr/en/news/ concerto-takes-height

Readout Electronics

Outlook: THz-IFUs for future observatories

flexible design scalable

Ground (LST, AtLAST)

KIDs also offer a promising route to constructing large-format imaging spectrometers. For example, the Deep Spectroscopic High-redshift Mapper (DESHIMA [41, 42]) is a new broadband spectrometer operating at 346-GHz with an instantaneous bandwidth of 40 GHz, recently tested on the Japanese Atacama sub-millimeter Telescope Experiment (ASTE). MOSAIC will be a successor instrument, scaling **DESHIMA**'s single pixel to a 25-pixel array, with potentially an even wider bandwidth to cover 240-720 GHz. Other 'on-chip' sub-mm spectroscopic solutions with moder-

Advantages of superconducting IFUs:

