Optical Technologies

Rob van der Meer

ILO-net webinar, 18 May 2021

Main Mirrors

- Current detectors (& ET high frequency)
 - Fused silica with extremely low absorption (ppm level) at 1064nm
 - Radii of curvature several km, deviation a few meters
 - Deviation from perfect sphere < 2nm
 - Super polishing <0.2nm RMS
- Challenge for ET: silicon mirrors
 - ca. 45cm diameter, 55cm thickness
 - High purity, >10kΩcm, for ppm-scale optical absorption
 - Similar polishing requirements
- 4 per detector, i.e. 12 for ET, plus spares
- Upgrades roughly every 5 years
- Smaller scale *now* for ETpathfinder

Photo: LIGO lab

Optical Coatings

- Current status
 - Silica/Tantala dichroic coatings
 - Optimized for very low absorption & scattering (ppm level)
 - Optimized for low mechanical loss (becomes high at low temperatures)
 - Two optics coated at once, for minimal spread in reflectivity
- Challenge for ET:
 - Low-loss (optical & mechanical) coatings for cryogenic silicon test-masses
 - Virtually free from scattering/absorbing points
 - Large diameter (45cm), homogeneous
 - Able to handle larger masses and diameters

Optical Sensing and Metrology

- Several types of optical sensors and metrology used during production and during operation
- Measuring reflected and transmitted waveform during polishing and coating, as well as surface roughness
- Beam profile monitoring and analysis
- In-situ monitoring of mirror curvature (wavefront sensors)
- Position alignment of test-masses with widerange optical sensors

Auxiliary Optics

- In addition to main test-masses, each interferometer has
 - Around 10 large (20cm scale) optics with very high optical specifications
 - Some telescope optics with off-axis spherical/parabolic mirrors
 - Several hundred small optics, most of them super-polished

Maastricht University

- Scope for e.g. free-form optics, adaptive optics, etc.
- In-vacuum and in-air optomechanics

Photo: EGO/Virgo

Sensors & Optics

for Gravitational Wave Detectors

Rob van der Meer

Nikhef

Sensors - Optical

- Photo diodes (PD, HQE-PD & QPD) -Light power & beam centering
 - -Longitudinal & angular alignment
- Phase cameras - To correct for mirror distortions
- Beam cameras for (pre) alignment of the interferometer and monitoring:
 - -InGaAs pixel detectors, phosphor coated CCD or CMOS
 - -For 1550 nm and 2000 nm?

Sensors - Displacement, tilt, ...

- Accelerometers
- Displacement sensors (LVDT)
- Inertial rotation sensors (BRMS type)
- Optical levers for mirror tilt
- Inertial motion measurement (Triaxial Nanometrics TC– 120 seismometers)
- Many environmental sensors: temperature, pressure, microphones, magnetometers.... (see Controls)
- Voice–coil actuators
- Piezo-electric stack actuators (PZT)
- Actuators and shadow sensors in a single unit (BOSEM) Laser for thermal compensation

Accelerometer

-MEMS sensor with integrated readout

 Photodiodes for LISA -InGaAs QPD with amplifier

- Voice coil mirror driver -3D printing in Aluminum
- Readout electronics for photo-diodes -Discrete and integrated (ASIC) electronics

Sensors for GW detectors

R&D examples

Max-Planck-Institut für Gravitationsphysik ALBERT-EINSTEIN-INSTITUT

- Quadrant diode with \Rightarrow 2 mm diameter, small gaps (10 - 20 μ m)
- Input-referred current noise \Rightarrow < 2 pA/ \sqrt{Hz} (per segment) Hence, low capacitance
- Responsivity \Rightarrow > 0.7 A/W at 1064 nm \Rightarrow InGaAs
- Bandwidth ⇒ 2..25 (30) MHz
- Low power dissipation (QPD & TIA)
- Radiation hardness, mechanical & thermal stability

InGaAs Photodiode

Requires state-of-the-art diode: large area, low capacitance

Sensors for GW detectors

- Bright Photonics
 - ✓ Design house for Photonic Integrated Circuits
 - ✓ Experience with InP & InGaAs materials

Smart Photonics

✓ Device processing of Indium Phosphide based components

Sensors for GW detectors

LISA QPD development Fotonica: een nieuwe

Technologie Een strategische lening van 20 miljoen euro bestempelt Smart Photonics tot spil van een nieuwe, veelbelovende Nederlandse chipindustrie.

🖋 Marc Hijink 🕚 30 juni 2020 🝈 Leestijd 2 minuten

Diodes for ETp & ET

Diodes for 1550 nm and 2000 nm laser light

Shot-noise limited

- ➡ InGaAs for 1550 nm (commercial)?
- Extended InGaAs or HgCdTe (MCT) photodiodes for 2000 nm?
- In air-filled enclosure in vacuum
 - Requires low power electronics

ET Pathfinder

Description	Quantit
PD 1550 nm	
HQE PD 1550 nm	
QPD 1550 nm	1
PD 2000 nm	
HQE PD 2000 nm	
QPD 2000 nm	1

ET Table?

Sensors: what we need

- •What we have
- -Big Science pushing the boundaries
- -Exploring novel sensors & techniques (R&D)
- •Challenges
- -Develop instrumentation because not commercially available: low noise, low power, high dynamic range, bandwidth, vacuum, radiation
- What we need
- -Collaboration with industry and research institutes on photonics, MEMS fabrication, wafer level packaging, integrated electronics, new materials

Ronald Broeke (Bright Photonics): "*The*

development of the diodes for LISA provides us with new knowledge that we will use in other applications in the future. Through collaboration with the NWO institutes Nikhef and SRON, we have explored new grounds in photonics regarding materials, simulation and application development for space"

Sensors for GW detectors

Power and Signal Distribution

- Provide Radio Frequency over Fibre (RFoF) technology
 - Focus on transmitter module development, inc. supply chain
 - 130,000 x 2 RFoF links to Central Processor
- Design not quite complete, some further development required
- Now production contract for EMS company

Fibre-optic link to CL

Netherlands Institute for Radio Astronomy

Fast timing developments **Timepix 4**

Jan Visser Industrial Liaison Officer for CERN & ET

Timepix4 applications

- Data-Driven applications:
 - HEP:
 - Very high rate pixel telescope
 - Sensor studies (high speed)
 - Time-of-flight mass spectrometry
 - Neutron time-of-flight imaging
 - Radiation monitors
 - Electron microscopy
 - X-ray and powder diffraction
 - Compton camera for medical diagnostics
 - Sub-pixel resolution imaging
- Frame-based imaging applications:

Gamma and neutron imaging for nuclear industry and Homeland Security

• X-ray imaging in synchrotrons with extreme high rates > 10⁹ particles/mm²/s

Medipix Meeting

Particle detection using Timepix3

Cosmic ray

145

xavier.llopart@cern.ch

Precise arrival time information (1.56ns steps) provides depth of interaction within the sensor layer

Medipix Meeting

3

Timepix4 main specifications

- Use of a commercial 65nm CMOS process
- Build a 4-side buttable pixel array
- Particle identification and tracking
 - Data-driven and zero suppressed
 - Sub-ns time binning
 - Improve the energy resolution
- Imaging
 - Increase particle count rate
- Design team from CERN, Nikhef and IFAE

Medipix Meeting

4

Timepix3 \rightarrow Timepix4

			Timepix3 (2013)	Timepix4 (2019)	
Technology			130nm – 8 metal	65nm – 10 metal	
Pixel Size			55 x 55 μm	55 x 55 μm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448 3	8.5x
Sensitive area			1.98 cm ²	6.94 cm ²	
Readout Modes	Data driven (Tracking)	Mode	TOT and TOA		
		Event Packet	48-bit	64-bit <mark>3</mark>	3%
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10⁶ hits/mm²/s	0,,
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel	οχ
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)	
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)	
		Max count rate	~0.82 x 10 ⁹ hits/mm²/s	~5 x 10 ⁹ hits/mm²/s	5 x
TOT energy resolution		ion	< 2KeV	< 1Kev	2 x
TOA binning resolution		tion	1.56ns	195ps	8 x
TOA dynamic range			409.6 μs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz)	4 x
Readout bandwidth		า	≤ 5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbp <mark>32x</mark>	
Target global minimum threshold		num threshold	<500 e⁻	<500 e⁻	

Medipix Meeting

5

Timepix4 floorplan arrangement

- 512 x 448 of 55 x 55 μm pixels
- 3 peripheries with TSV (Through-Silicon-Vias):
 - TOP Edge: Data Readout & Slow Control
 - BOTTOM Edge: Data Readout & Slow Control:
 - CENTER: Slow Control and Analog Blocks
- On-chip bump to pixel redistribution layer (RDL)
- Chip size:
 - With WB (wirebonds extenders): 29.96 mm x 24.7 mm
 - >93.7% active area (28.16mm x 24.64mm)
 - Without WB (TSV Only) : 28.22 mm x 24.7 mm
 - >99.5% active area (28.16mm x 24.64mm)
- Control architecture allows to operated Timepix4 from any of the 3 peripheries:
 - i2C protocol
 - Custom Slow Control protocol
 - Interface to DAQ

Medipix Meeting

Big step forward

xavier.llopart@cern.ch

Medipix Meeting

Imaging

- X-ray diffraction
- **Electron Microscopy**
- Neutron imaging
- Space dosimetry
- Many more

Photo

HEP to 'Medipix' applications

12

8

X-ray image of conversion layers

Electron microscopy

Jan Visser

Mass Spectrometry + X-ray CT slice

