

European Extremely Large Telescope Astronomical instrumentation

21 September 2011

Wilfried Boland

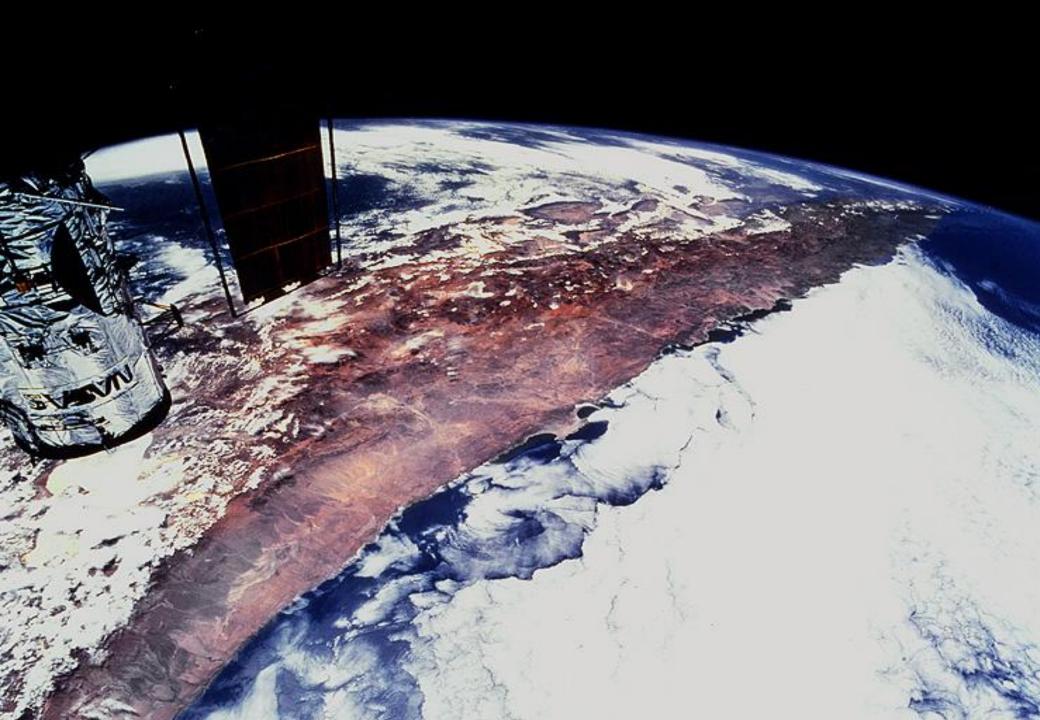
NOVA introduction

Netherlands Research School for Astronomy

 Top research school, evaluated exemplary in 2010
 Federation of university astronomy institutes
 290 fte scientific staff (20% is directly funded by NOVA)

 Mission

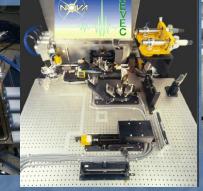
Facilitating top astronomical research in the Netherlands
 Hire researchers
 Build instruments

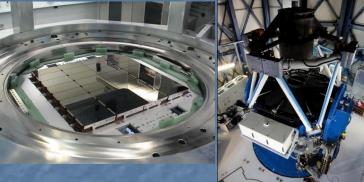

Train young astronomers at highest international level

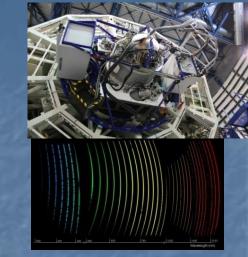
ESO Very Large Telescope

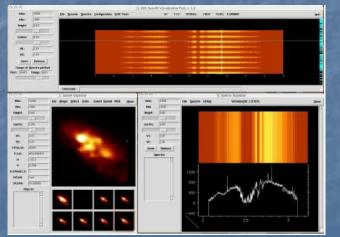
of the state

Atacama Large Millimeter Array ALMA

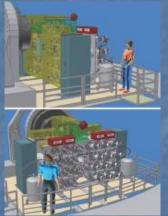



NOVA ESO projecten


MIDI


NEVEC

OmegaCAM voor VST \rightarrow OmegaCEN


X-Shooter nabij-IR spectroscopische arm

SINFONI: 2k camera voor SPIFFI: nabij-IR integral field spectrometer

Optical bench voor SPHERE Zimpol

MUSE-ASSIST: test set-up voor nieuwe VLT deformeerbare secundaire spiegel

Nieuwe grote ESO project: ~40m optisch/IR telescoop Fase B afgerond: klaar voor de bouw! (na goedkeuring Council)

NOVA instrumentation program

Many discoveries are driven by new instrument capabilities

- Involvement in instrument ⇒ decision about functionality
- Involvement in instrument ⇒ understanding the instrument performance
- Involvement in instrument ⇒ early access to data
- Involvement in instrument ⇒ ideal position to make discoveries!
- NOVA strategy:
 - Design & construct instruments for international facilities
 Focus on ESO
 - NOVA Optical-Infrared instrumentation group located at ASTRON in Dwingeloo

Astronomy in the Netherlands

Mid-term update of the Strategic-Plan 2001-2010 and forward look to 2015

Instrument Project Characteristics

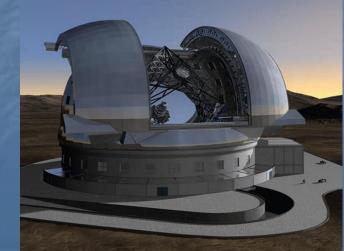
- Collaborations with international partners (for ESO projects ~4-6 partners)
- NOVA astronomer NL-leader and connection to the international consortium
- Common Project management procedures under ESO protocol (PDR, FDR, progress meetings etc.)
- Hardware design and manufacturing by NOVA Optical-IR instrumentation group
- Dutch astronomers in (inter)national science team to ensure interesting capabilities

NOVA and the E-ELT

Objective:

Participate in design & construction of instrumentation for E-ELT
 In one as a leading partner (40% share)
 In another one as minor partner (20% share)

Funding:


General NOVA budget

■ ESFRI grant of 18.78 M€

■ 8.78M€ for design and development

■ 10M€ to build one instrument (requires PI role)

Other grants

E-ELT: 8 SCIENCE INSTRUMENTS +2 Post Focal AO MODULE STUDIES

INSTRUMENT MAIN OBSERVING MODES

OPTIMOS

CODEX

METIS

EAGLE

HARMONI

SIMPLE

MICADO

EPICS + XAO

MAORYLTAO

Multi-slit and fiber MOS options are being studied High Resolution, High Stability Visual Spectrograph Mid IR camera /spectrograph WF, Multi IFU NIR Spectrograph. +AO Single IFU, Wide Spectral Band Spectrograph High-Resolution IR spectrograph NIR Camera sampling to the DF Planet Imager and Spectrograph

(MCAO) with 2 additional DM Module Provides DL images over a field <30"

E-ELT Instrumentation in NL

Consortium: Universities: NOVA, TU Delft, UTwente Technological institutes: ASTRON, SRON & TNO Companies: Airborne Composite BV, Dutch Space, JPE Applied for in 2008, awarded in 2009, end 2020+ Phase I (8.78M€): Preliminary design (4 instruments) Technology developments Phase II (10M€): Construction of one instrument

Industrial participation

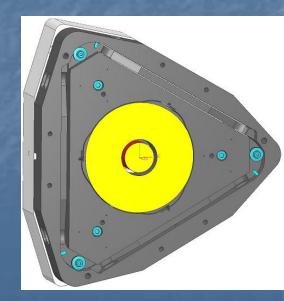
Large research facilities means big business Industry can become project supplier to ESO and/or NOVA Construction of the telescope Delivery of subsystems to the telescope Supplier of parts of instrumentation, or partner in (optical, mechanical or thermal) design; partner is R&D to demonstrate technical readiness

Industrial participation

Large research facilities means big business Industry can become project supplier to ESO and/or NOVA Construction of the telescope Delivery of subsystems to the telescope Supplier of parts of instrumentation, or partner in (optical, mechanical or thermal) design; partner is R&D to demonstrate technical readiness

Technology developments I

Vibration-free and precise cryo-coolers Present partners: UTwente, Dutch Space Motivation: High precision instruments, no vibrations Potential solution: sorption coolers <u>Remaining problems</u>: Sorption compresso Passive check valves • Cooling power too low (10mW \Rightarrow 1W) high pressure pressure buffer buffer ■ University product ⇒ commercial product

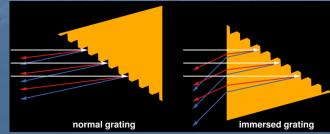

Technology developments II

Movable cryogenic systems

- Present partners: NOVA Op-IR, JPE, SRON, TNO
- <u>Motivation</u>: High precision positioning and stability of movable elements in a cryogenic environment (80K)

Problems:

 Opto-mechanical engineering
 Very accurate positioning (nm), metrology and control


Technology developments III

New optical components and materials

- <u>Present partners</u>: Airborne, NOVA Op-IR, SRON, TNO
- <u>Motivation</u>: Standard techniques will make the instrument rather big and heavy, or do not provide the required stability
- <u>Potential solutions</u>: composite materials, immersed gratings, integrated optics, smart optics, free form mirrors

<u>Remaining problems</u>:

- Behavior of composite materials in a cryo-vacuum environment (stiffness, air tightness, out-gassing)
- Immersed gratings have not yet been made with the required accuracy
- Manufacture products with the required accuracy (required micro-roughness RMS for free-form 30cm large Al mirrors = 15nm)

Technology developments IV

Other areas where NOVA will look for partners: Polarimetric elements and engineering Precision engineering Better performance prediction, improved overall system engineering control, modeling alignment tolerances, Advanced data flow system AO Control (hardware and software) Industrial production process

There are many opportunities for industrial participation and products!

20

One example: METIS

Mid-infrared E-ELT Imager and Spectrograph Operating from 3 to 14 micron Imager (L,M, N-band) Low resolution long slit spectrometer (L, M, N-band) High resolution IFU spectrometer (L, M band) Coronography (L, M, N band) Polarimetry (N-band) NOVA has PI role Overall project management High resolution IFU spectrograph Fore optics Cold central structure

Conclusion and Contact

There are many opportunities for industrial participation and products!

Wilfried Boland (<u>boland@strw.leidenuniv.nl</u>)
 Frank Molster (<u>molster@strw.leidenuniv.nl</u>)