GRAVITATIE

Plannen voor Virgo en ET

Jo van den Brand

Nikhef: BSI-middag, September 21, 2011; jo@nikhef.nl

STUDIES VAN HET UNIVERSUM

GRAVITATIE IS GEOMETRIE

- c Cirkelbaan
- e Elliptische baan
- u Ongebonden baan (parabool)

GRAVITATIESTRALING BESTAAT: PSR B1913+16

Russell A. Hulse Joseph H. Taylor, Jr. In 1974 werd de eerste pulsar in een binair systeem ontdekt

Periode ~ 8h GW emissie verkort de periode Indirecte detectie van GWs Nobelprijs 1993

EFFECT VAN EEN GRAVITATIEGOLF

Getijdenkrachten

- Gravitationele effecten van een verre bron kunnen enkel gevoeld worden door getijdenkrachten
- Getijden versnellingen Aarde-Maan systeem
- GW kunnen beschouwd worden als lopende, tijdsafhankelijke getijdenkrachten
- Getijdenkrachten schalen met grootte, en produceren typisch elliptische vervorming

Na subtractie van centrale versnelling

INTERFEROMETER APPROACH

Test masses

- System of free-falling test masses is displaced by GW
- Equip test masses with mirrors and measure relative displacement (strain)
- Plus- and cross polarization states
- Antenna pattern funtions

$$h(t) = F_{+}(\theta, \varphi, \psi)h_{+}(t) + F_{\times}(\theta, \varphi, \psi)h_{\times}(t)$$

$$h(t) = F(t)\left(\cos\xi h_{+} + \sin\xi h_{\times}\right), \quad F = \sqrt{F_{+}^{2} + F_{\times}^{2}}, \quad \tan\xi = F_{\times}/F_{+}$$

Resonant mass antennas

Joe Weber (after 1960)

STAAF DETECTOREN: IGEC COLLABORATION

AURIGA

MINI-GRAIL: EEN BOLVORMIGE `STAAF' IN LEIDEN

GW DETECTIE MET INTERFEROMETER

INTERFEROMETER: PRINCIPE

INTERNATIONAL CONTEXT

INTERNATIONAL CONTEXT

- Caltech and MIT driven in USA

INTERFEROMETER AS GW DETECTOR

- Principle: measure distances between free test masses
 - Michelson interferometer
 - Test masses = interferometer mirrors
 - Sensitivity: h = DL/L
 - We need large interferometer
 - For Virgo L = 3 km

Virgo: CNRS+INFN

(ESPCI-Paris, INFN-Firenze/Urbino, INFN-Napoli, INFN-Perugia, INFN-Pisa, INFN-Roma,LAL-Orsay, LAPP-Annecy, LMA-Lyon, OCA-Nice) + Nikhef joined 2007

Science run completed on September 4, 2011

VIRGO OPTICAL SCHEME

VACUUM SYSTEM

• UHV

 Largest ultra-high vacuum system in Europe

MIRRORS

High quality fused silica mirrors

- 35 cm diameter, 10 cm thickness, 21 kg mass (40 kg for AdV)
- Substrate losses ~1 ppm
- Coating losses <5 ppm
- Surface deformation ~I/100

Quantum non-demolition measurements

THERMAL NOISE

Mechanical modes are in therr

- Modes:
 - Pendulum mode
 - Wire vibration
 - Mirror internal modes
 - Coating surface
- Energy associate: $k_{\rm B}T$
- Thermal motion spectrum:

• Strategy:

- use low dissipative materials:
 - ightarrow concentrate the motion at the

SUPERATTENUATORS

VIRGO STATUS & COMMISSIONING

EVOLUTION OF SENSITIVITY

INTERFEROMETERS – SENSITIVITY

The horizon (best orientation) for a binary system of two neutron stars is 22 Mpc and of two 10 solar mass black holes is 110 Mpc

DIRECT DISCOVERY OF GW

- Advanced Virgo
 - Improve sensitivity by factor 10
- Probable sources
 - Binary neutron star coalescence
 - Binary black holes mergers, supernovae, pulsars
- BNS Rates: (most likely and 95% interval)
 - Initial Virgo (30Mpc)
 - 1/100yr (1/500 1/25 yr)
 - Advanced detectors (350Mpc)
 - 40/yr (8 160/yr)

Kalogera et al; astro-ph/0312101; Model 6

BBH more difficult to predict

BURST SOURCES

- Gravitational wave bursts
 - Black hole collisions
 - Supernovae
 - Gamma-ray bursts (GRBs)
- Short-hard GRBs
 - Could be the results of merger of a neutron star with another NS or a BH
- Long GRBs
 - Could be triggered by supernovae

SN1572 (Tycho) composite image (X + IR)

CONTINUOUS WAVE SOURCES

- Rapidly spinning NS
 - Mountains on neutron stars
- Low mass X-ray binaries
 - Accretion induced asymmetry
- Magnetars and other compact objects
 - Magnetic field induced asymmetries
- Relativistic instabilities
 - r-modes, etc.

SN1052 (Crab) composite movie (X + visible) X-Ray Image Credit: NASA/CXC/ASU/J.Hester et al. Optical Image Credit: NASA/HST/ASU/J.Hester et al.

COMPACT BINARY MERGERS

- Binary neutrons stars
- Binary black holes
- Neutron star black hole binaries

Binary Black Hole in 3C 75 Credit: X-Ray: NASA / CXC / D. Hudson, T. Reiprich et al. (AlfA); Radio: NRAO / VLA/ NRL Loss of energy leads to steady inspiral whose waveform (phase) has been calculated to order v⁷ in post-Newtonian theory

 Knowledge of the waveforms allows matched filtering

SIMULATION - MERGING OF BBH

- Pretorius 2005 (arXiv:gr-qc/0507014)
 - BBH orbit, merger and ringdown
 - Energy loss by GW
- Rezzolla
 - Templates with sufficient precision for Advanced LIGO and Virgo

Advanced Virgo

PROJECT GOALS

- Upgrade Virgo to a 2nd generation detector. Sensitivity: 10x better than Virgo
- Be part of the 2nd generation GW detectors network. Timeline: in data taking with Advanced LIGO

CRYOLINKS

SEISMIC ATTENUATION SYSTEMS

LB

EIB-SAS features

- External Injection Bench
- Realize seismic attenuation system
 - Factor 1000 in 6 degrees of freedom
- Displacement noise less than 10⁻¹² m/rtHz

B1p

ASY

ANTISPRING TECHNOLOGY

- Attenuation
 - Horizontal: inverted pendula
 - Vertical: GAS filters
- Transfer function
 - 60 dB above 10 Hz
 - Achieved > 65 dB at 20 Hz
 - Single stage
- No commercial solutions
 - Interest from industry

GAS AT AEI

10 m prototype ITF

- GAS design
 - 12 GAS filters total
 - In vacuum operation
- Features
 - 8 GAS blades per filter
 - SiC magic wands
- Results
 - > 90 dB at 40 Hz

Alessandro Bertolini Alexander Wanner AEI, Hannover

EXTERNAL INJECTION BENCH

SAS features

- Single-stage attenuation system
- Six degrees of freedom
- Sensors: 6 accelerometers, 6 LVDTs
- Consistent with10⁻¹² m/rtHz
- Compact design
- Installation Q4 2011

CONTROL SYSTEM: ADC7674

ADC7674

– Analog part:

- VME size board (only for power supplies)
- ADC : AD7674 18-bit @ 800kHz
- 16 ADC channels
- Mezzanine : anti-alias and compression filter
- Differential or single-ended input
- Digital Part
 - DSP computing for 8th order filters (DSP Sharc ADSP21262)
 - Decimation to reduce the output data rate
 - TOLM interface
- Nikhef setup
 - 16 analog flat mezzanines
 - One optical transceiver connected to the RTPC TOLM_PCI
 - One RJ45 cable connected to the TDB to receive the IRIGB signal
- Configuration file: /virgoData/Adc7674/ADC0.cfg

PCI DAC board

- 8 DAC channels, 16 bits DAC chip
- No external trigger, no anti-image analog filter

A.Masserot, B.Mours, E.Pacaud, LAPP Henk Jan Bulten, Nikhef

SEISMIC ATTENUATION SYSTEMS

LINEAR ALIGNMENT SYSTEMS

Angular control of optical elements

- Modulate carrier
 - 6.26, 8.35, 56 and 131 MHz
- QPD front-end systems
 - Transimpedance amplifiers
 - Shot noise limited performance
- Demodulation electronics
- Seismic attenuation systems

B8

Phase camera's

Figure 1: Current opto-electronic set up of the phase camera at Nikhef. The system uses modulation/demodulation techniques to allow for frequency selective wave-front sensing.

PHASE CAMERA'S

- Time of flight camera's
 - 3D imaging
 - PMD, Mesa (SLIM)
 - CCD, IR LEDs
 - Operate at 30 MHz
 - Software framework
 - Waveform decomposition
 - Hermite-Gauss polynomials

OPTICAL COMPONENTS – DIHEDRON

Marinebedrijf Den Helder

OPTICAL COMPONENTS - END MIRROR

END MIRROR SYSTEM FOR IMC

OTHER GW PROJECTS

UNDERGROUND DETECTOR IN KAMIOKA

Experience: Japan

 LISM: 20 m Fabry-Perot interferometer, R&D for LCGT, moved from Mitaka (ground based) to Kamioka (underground)

10² overall gain

- Seismic noise much lower:
- Operation becomes easier

EINSTEIN TELESCOPE gravitational wave observatory

Design Study Proposal approved by EU within FP7 Large part of the European GW community involved EGO, INFN, MPI, CNRS, Nikhef, Univ. Birmingham, Cardiff, Glasgow

Recommended in Aspera / Appec roadmap

a

IT REAL TAXAL

- Einstein Telescope
 - Triangular topology
 - Underground
 - Depth: 100 200 m
 - Gravity gradient noise
 - Cryogenic mirrors
 - 10 km arms
 - Xylophone detector
 - HF ITF
 - LF ITF
 - Up to 6 ITFs

ET INFRASTRUCTURE

Infrastructure: largest cost driver

- Tunnels, caverns, buildings
- Vacuum, cryogenics, safety systems
- Collaborate with industry
 - COB (Amsterdam, October 9, 2008)
 - Saes Getters Italy
 - Demaco Netherlands

Experience

- LIGO, Virgo, GEO
- Underground labs
 - Gran Sasso, Canfranc,
 - Kamioka, Dusel, etc.
- Mines
- Particle physics
 - ILC, Cern, Desy, FLNL
- Seismology
 - KNMI, Orfeus
- Geology

ET INFRASTRUCTURE

ET INFRASTRUCTURE

EXPECTED FUTURE SENSITIVITIES

GW ANTENNA IN SPACE - LISA

- 3 spacecraft in Earth-trailing solar orbit separated by 5 x10⁶ km.
- Measure changes in distance between fiducial masses in each spacecraft
- Partnership between NASA and ESA
- Launch date >2020+

SCIENCE GOALS

WHAT HAPPENS AT THE EDGE OF A BLACK HOLE?

Is Einstein's theory still right in these conditions of extreme gravity? Or is new physics awaiting us?

SCIENCE GOALS

WHAT IS THE MYSTERIOUS DARK ENERGY PULLING THE UNIVERSE APART?

DARK ENERGY AND MATTER INTERACT THROUGH GRAVITY

SCIENCE GOALS

light

Now

The LIGO Scientific Collaboration & **The Virgo Collaboration**

INFLATION AND PHASE TRANSITIONS

- Theoretical (astro)particle physics community
 - GW, inflation, string theory, cosmic defects (M. Postma, Nikhef)
 - Jan Willem van Holten et al. (Nikhef, Leiden)
- Provide templates, spectra, etc.
 - Participate in Virgo LIGO analysis

SUMMARY

Gravitational wave physics

- Component of Dutch Astroparticle Physics initiative
- Exciting new physics program
 - Important questions are addressed
 - Program with a long-term scientific perspective
- Virgo and LIGO
 - Sensitivity is improving fast
 - First science runs completed
 - Advanced detectors in preparation
- Future
 - Third-generation GW detector: Einstein Telescope
 - LISA: GW in space