Cryocooler development, use in RF applications

Thales Cryogenics, Eindhoven Tonny Benschop 2019-05-15

Thales group at a glance

Thales Cryogenics profile

Deliver best in class cryogenic coolers or systems for various applications (Defense, Space, Civil) that will exceed customer expectations in terms of performance and life.

Focus on used technologies

PRODUCT DESIGN REQUIREMENTS: Compact, Closed Cycle, No Maintenance, High Availability

Overview of Thales Cryogenics Product Line Perimeter

THALES

Our markets and examples of applications

SKA-MID Dishes (artist impressions)

All about sensitivity:

- Large number of dishes
- Large spread of dishes to filter local disturbances
- Uniform performance of the dishes required
- High sensitivity receivers
- Low noise electronics
- Huge amount of data handling

Cryogenic cooling required 4 K // 20 K // > 50 K

SKA-Mid challenges

SKA mid:

- > Measurement at different bands (500 MHz .. 13 GHz)
- > Different instruments for different bands
- Higher frequency bands need receiver electronics cooled to cryogenic temperatures

Today's system:

- Using GM cryocooler cooling electronics to temperatures below 20K
 - Complex / large system
 - High input power
 - Yearly maintenance

> Advantages:

- Known technologies
- High cooling power available below 20K

Radio Frequency Interference challenge

- SKA will be created in today a low RFI environment.
- However, there will interference from:
 - > Potential future RFI sources
 - Communication from satellites and planes

High efficient filtering could be required in the future

Background information: Filter & LNA or only LNA

There are (at least) two options for the filtering:

> "RFI elimination": Use of superconductive filter before the LNA.

> "Classical method": Use of a robust LNA with (digital) filtering after the LNA output

Thales involvement in RF - projects

Since 2015 Thales has been in contact for cooling RF filters and LNA's operating at temperatures around 77K

- Cooling of HTS filters:
 - » For secure communication
 - » For elimination of Radio Frequency Interference signals
- Cooling of HTS narrow band oscillators
- Cooling of LNA's

For these markets 2 kinds of zero maintenance compact Stirling cooler are under qualification:

- One 2W @ 77K | 2 kg cooler
- One 10W @ 77K / 2W @ 40K | 6 kg cooler

Possible system design

Configuration of Cryo-receiver

Conventional Cryo-receiver Compact Cryo-receiver

System test in Radio Telescope (Mizusawa and Ishigaki Japan)

Actual cryo-receiver (at 20K) Tsys=96K @1.4GHz Tsys=85K @1.6GHz

Improvement of sensitivity -25% to -40%

Toshiba's cryo-receiver (at 77K) Tsys=56K @1.4GHz band Tsys=65K @1.6GHz band

New RF receivers have been installed Febr 2019 (incl HTS filters) which allowed continuous operation (eliminating RFI)

Demonstration unit for RFI tests

LNA Gain: about 15dB Receiver noise temperature: 24K

Work performed by Toshiba, sponsored by NJAO and Ministry of Internal Affairs and Communications Japan

Field tests of Receiver units in Thailand

Cryogenic Unit 6 LNA modules 12 IO interfaces 80W cryocooler

Tests started May 2017 and systems are still running perfectly.

Required innovations steps for SKA-MID

- Optimize cooler performance < 50K
- Development of Wide band LNA's > 40K
- Decide on use of full HTS circuit's (incl filtering)
- Optimize thermal design
 - > High vacuum dewar
 - Low thermal heat leaks
- Low RF insertion losses:
 - Low insertion loss RF interfaces

Conclusions

SKA-MID could benefit from insertion of new technologies

- > HTS; Filters, LNA's, and matching circuits design
- Low loss RF connections
- > Zero maintenance Cryocoolers
- High vacuum technology dewars

Over the past years Thales has been working with several international customers in the Astronomy (RF-)market segment at R&D level and gained more insight in this market segment.

Future R&D will be required in an international setting in order to be able to mitigate high operational costs for SKA-Mid.

ASTRON and Thales Cryogenics could play an important role in SKA-Mid