UNIVERSITEIT TWENTE.

Thermal Challenges for Superconductors in Big Science

M. Dhallé, A. Nijhuis, H. ten Kate, M. ter Brake

Thema-bijeenkomst "Thermal Challenges", Mikrocentrum Veldhoven, 15 Mei 2019

Superconductors = key enabling technology for Big Science

Magneto-hydrodynamics (fusion):

```
J \times B + \nabla P = 0
```

Circular beams (high-energy physics):

BR = 3.336 pHigher $B \rightarrow$ more compact machines

Thermal challenges for superconductors Safeguard (cryogenic) operational temperature

UNIVERSITY OF TWENTE.

Against

- Cryostat loss
- Feedthrough loss
- AC loss (dynamic)
- Radiation loss

lssues

- Stability (*J,B*)
- 'Quench' detection / protection

Thermal challenges for superconductors Safeguard (cryogenic) operational temperature

UNIVERSITY OF TWENTE.

High-Temperature Superconductors (HTS) rapidly maturing

Higher *T* and/or <u>higher *B*</u>

- Further size reduction
- Increased stability but ...
- Harder quench detection
- Increased AC loss
- Increased cost

HTS magnets for HEP (1)

20T – class dipole insert (ReBCO Roebel cable)

HTS magnets for HEP (2)

HTS detector-grade solenoid (ReBCO CorC CICC)

Heating of superconductors in ITER Coils

Superconductor operation is limited by:

- ✓ temperature
- ✓ magnetic field
- ✓ current
- ✓ mechanical stress (TF & CS)

Plasma Operating Scenario determines temperature superconductors:

- ✓ nuclear heating
- ✓ structure eddy currents
- superconductor AC losses

Unique detailed numerical multi-physics **TER Superconductor Model JackPot AC-DC** developed at University of Twente, best equipped to predict the operational temperature margin for all ITER coils during any Plasma Operating Scenario.

Unique experiments 🕟 precise model inputs

Unique experiments on ITER Superconductors at University of Twente (ITER Reference Lab), determining electromagnetic, thermal and mechanical properties required for performance prediction under Plasma Scenario coil operation.

JackPot AC-DC ITER cable/joint model

Cable model accurately describing <u>all</u> (>1000) strand trajectories; including compaction steps

- \checkmark Interstrand contact resistance distribution
- ✓ Strand's self/mutual inductances
- ✓ Coupling with self- & coil background field
- ✓ Strand's scaling law $I_c(B,T,\varepsilon)$ and V(I)

Model output:

Simulation for ITER CS 15 MA Plasma Scenario: Highest temperature in turns at inner radius of CSU2 and CSL2 modules. For faster and more precise Plasma Scenario operation computations, collaboration needed with TUE PS computations.

ITER – JackPot analysis of PF Joints- MPM

Stability of ITER Coil Joints during 15 MA Plasma Scenario by electromagnetic and thermal computations at detailed SC wire level.

Modeling EUROfusion DEMO TF conductors

Cable model accurately describing <u>all</u> (>1000) strand trajectories in CICC for analysis of the current distribution, Minimum Quench Energy, and Power dissipation during DEMO operation scenario.

Design optimization of DEMO HTS cables

Spin-out projects

Renewable energy (EcoSwing), cyclic economy (SMDS), enhanced performance (HSLM), ...

