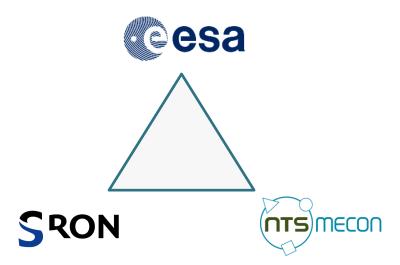


Suspension of a Cryogenic Detector at 50 mK

Erik Kroesbergen NTS Mecon

Mikrocentrum, Veldhoven, 15 mei 2019


Introduction – Participants

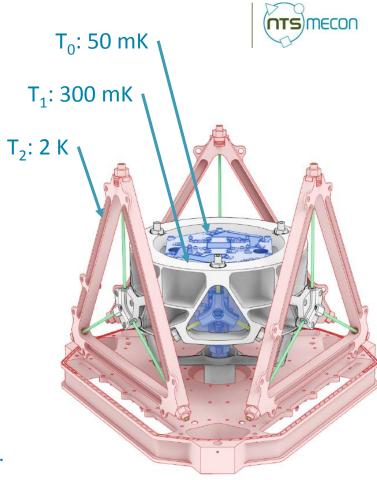
- 1. European Space Agency (ESA) Programme lead and funding
- 2. Netherlands Institute for Space Research (SRON) Scientific research and instrumentation for space

3. NTS Mecon

Co-development, engineering and prototyping

Note: this presentation doesn't reflect the official opinion of the European Space Agency and the Netherlands Institute for Space Research

Introduction – Suspension concept


Key requirements:

1. Detector shall be kept extremely cold (50 mK) with limited cooling capacity

 \rightarrow Need for <u>thermal insulation</u>

- 2. Fixation shall survive launch into space and shall keep detector in well-defined position
 - → Need for high <u>strength</u> and <u>stiffness</u>

SRON concept: Detector suspension using kevlar cords under pretension.

SRON X-IFU DM FPA design

Introduction – Cord material

Kevlar has most suitable combination of strength, stiffness and low thermal conductivity.

Material	$\frac{E}{\lambda}$ [1 E/ λ s/m ²]		$\frac{\sigma_{max}}{\lambda} \sigma_{max}^{10} / \lambda^{s/m^2}$	
	50mK - 0.3K	0.3K - 2K	50mK - 0.3K	0.3K - 2K
SS 304	10	0.23	13.4	0.30
Kevlar 49	75.8	0.78	835	8.61
NbTi	26.8	0.12	111	0.51
Carbon fibre	55.9	0.78	319	4.46
Ti 15333	42.8	0.24	360	1.99

But other Kevlar properties introduce challenges:

- Expansion upon cooling \rightarrow loss of pretension in construction.
- Low ductility \rightarrow ESA requires FoS = 2 \rightarrow required strength \approx 5 kN.
- Poor adhesion \rightarrow fixation difficulties.

Project objectives

A. Optimization of high-strength end fittings for Kevlar cord fixation

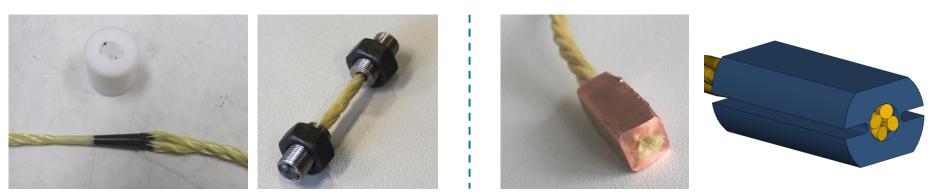
- Selection end fitting concepts
- Verification by sample testing

B. Characterization of suspension built with optimized end fittings

- Thermal / mechanical modelling
- Suspension testing

C. Development of reliable and reproducible manufacturing process

- Production tooling
- Manufacturing procedures


A. Optimization of high-strength end fittings for Kevlar cord fixation

A. Optimization of high-strength end fittings

Two concepts selected for sample testing.

Concept 1 – Tapered potting

Concept 2 – Swaging

Photo's: SRON

A. Optimization of high-strength end fittings

Sample test iteration 1: tensile testing.

Reference

Twisting

Cord diameter Cleaning

Catalyst

Variable

Reference

Cord diameter

Dam width

Swaging distance

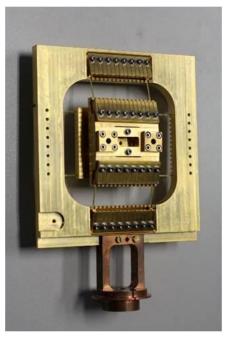
Roughness

Photo: SRON

Result: Optimized design for preferred concept (tapered potting)

A. Optimization of high-strength end fittings

Sample test iteration 2: full testing of optimized design.



Thermal cycling

Photo's: SRON

Thermal conductivity

Bake-out test

Relaxation test

Suspension of a Cryogenic Detector at 50 mK

B. Characterization of suspension built with optimized end fittings

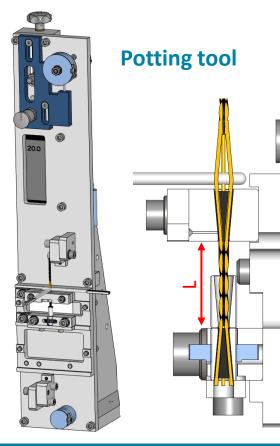
B. Characterization of suspension


1. Thermal / Mechanical Modeling

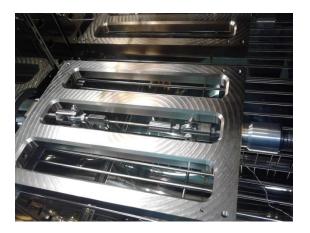
- Strength
- Eigenfrequencies
- Heat flows through suspension

2. Vibration testing

- Strength
- Eigenfrequencies
- Pretension loss
- Vibration induced heating


Test set-up for vibration testing

C. Development of reliable and reproducible manufacturing process


C. Development of reliable and reproducible manufacturing process

Bake-out tool

Air pockets deviation

Suspension of a Cryogenic Detector at 50 mK

Questions ?